跳至主要内容

Mini-Encyclopedia of Papermaking Wet-End Chemistry

Mini-Encyclopedia of Papermaking Wet-End Chemistry

Additives and Ingredients, their Composition, Functions, Strategies for Use

ANTI-FOAM / DEFOAMER

Composition:

There is an extremely diverse set of chemical formulations that can be effective either to prevent foam (anti-foam) or to destroy it once it has formed (defoamer). Actually the distinction between these two terms is usually ignored. Most foam-fighting chemicals can serve either role.
Let's therefore use the term "defoamer" as a general label for all of these chemicals.
The most universal characteristic of any defoamer is the fact that it is surface active, but highly insoluble in water. It has to be formulated so that it will be dispersed as tiny droplets, i.e. as an emulsion.
The surface-active nature of the material causes it to spread very rapidly onto any air-water interface that it encounters. This is especially the case if that interface already is covered by the types of surface-active materials that tend to stabilize foams.
Some, but not all defoamers contain hydrophobized silica particles or ethylene-bis-stearamide particles. The function of such particles is to pierce the surfaces of foam bubbles, causing them to coalesce when the defoamer spreads at the interface. In the past the main ingredient of many defoamers was oil.
However, concerns about chlorinated organic products of bleaching have caused many pulpmakers and papermakers to switch to low-oil, 100% "active", or silicone-based defoamers that don't have this problem.

Function:

To cause foam bubbles to coalesce to the point where they are large enough to float harmlessly to the water surface and break

Strategies for Use:

The main concern is to use the correct dosage. Too little defoamer may mean that the paper machine does not achieve the required drainage performance, it may be very dirty, and there may be loss of materials as foam spills from the white water silo and other points in the process.
Too much defoamer often adversely affects the performance of sizing agents, and dry strength agents, and it can cause or worsen deposit problems.
The best approach is to test the air content of headbox furnish and cut the dosage to the minimum needed to keep air content at an acceptable level. Defoamer addition anywhere in the thin-stock loop will tend to eliminate air from the furnish in the white water silo and in the deculators (air-removing elements, if present).
It is worth noting that even when bubbles are eliminated, some dissolved air will remain in the furnish, and this can be released as bubbles when the jet of stock leaves the high-pressure zone of the headbox.

Cautions:

Any tacky deposits found in a paper mill are likely to contain defoamer materials. A large overdose of defoamer is likely to cause microscopic foam bubbles that can be very persistent.
papermaking wet end chemical Mechanism of foam breakage by a defoamer. This inolves spreading of an water-insoluble surfacatant on the bubble surfaces.

PLEASE NOTE:

Users of the information contained on these pages assume complete responsibility to make sure that their practices are safe and do not infringe upon an existing patent. There has been no attempt here to give full safety instructions or to make note of all relevant patents governing the use of additives. Please send corrections if you find errors or points that need better clarification.
https://www.linkedin.com/company/china-defoamer

https://www.facebook.com/invelychem/

评论

此博客中的热门博文

The magical effect of fumed silica in silicone rubber

The magical effect of fumed silica in silicone rubber Fumed silica is one of the most important high-tech ultra-fine inorganic new materials. Due to its small particle size, it has a large specific surface area, strong surface adsorption, large surface energy, high chemical purity, good dispersion performance, thermal resistance, It has specific properties in terms of electrical resistance, etc. Its superior stability, reinforcement, thickening and thixotropic properties are unique in many disciplines and fields and have an irreplaceable role. Today, Xiaobian will work with you to learn how to apply fumed silica in silicone rubber. Application of fumed silica in high temperature vulcanization (HTV) silicone rubber The use of fumed silica can be divided into silicone materials and other fields, in which the amount of silica in the silicone material is nearly 60%, and the silicone rubber is the most used material in the silicone material. It can be added in an amount of up to 50% ...

How do we assess antifoam efficiency ?

How do we assess antifoam efficiency ? Quality of an antifoam is given by two main characteristics : • Knockdown ability or shock effect :Meaning the speed to destroy an existing foam. • Persistence or durability : Meaning the efficiency over time.   These two parameters can be assessed by several tests. The main test is the bubbling method. A graduated column with a glass frit in the bottom is required. Foaming water is poured in the column and air at constant flowrate is introduced through the glass frit in the column. Foam is generated by the air and starts to travel up the column. At a determined level of foam, antifoam is injected. By this method several antifoaming agents can be tested. A graph reporting foam height vs time is very helpful to establish the knockdown ability and the persistence for each product. The selected antifoam is the product with the best compromise between shock effect and durability       Environmental performance   Silicone antifo...

Why is there foam in the paint and coating? What we should do to eliminate foam?

Why is there foam in the paint and coating? What we should do to eliminate foam?             check below details:           Surface tension The surface tension of the coating has a great influence on the defoaming agent.  The surface tension of the defoaming agent must be lower than the surface tension of the coating. Otherwise, there is no defoaming and foam suppression. The surface tension of the coating is a variable factor, so a constant surface tension is required when using the defoamer, and then the surface tension variation factor is taken into account. The influence of other additives Surfactants used in coatings are mostly functionally incompatible with defoamers. In particular, emulsifiers, wetting and dispersing agents, leveling agents, thickeners, etc., have an effect on the effect of the antifoaming agent. Therefore, we must pay attention to ...